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1 Introduction

Nonlinear evolution equations (NLEEs) can be
used to describe many nonlinear phenomena such
as fluid mechanics, plasma physics, optical fibers,
biology, solid state physics, chemical kinematics,
chemical physics, and so on. Recently, research
for seeking exact analytical solutions of NLEEs
is a hot topic, and many powerful and efficient
methods to find analytic solutions have been pre-
sented so far. For example, these methods include
the known homogeneous balance method [1,2], the
tanh-method [3-5], the inverse scattering trans-
form [6], the Backlund transform [7,8], the Hiro-
tas bilinear method [9,10], the generalized Riccati
equation [11,12], the sine-cosine method [13], the
Jacobi elliptic function expansion [14,15], the F-
expansion method [16], the exp-function expan-
sion method [17], the (G’/G)-expansion method
[18,19]. However, we notice that most of the ex-
isting methods are dealing with constant coeffi-
cients, while very few methods are concerned of
variable-coefficients.

In this paper, by introducing a new ansatz,
we develop a variable-coefficient simplest equation
method for solving NLEEs, which is the extension
of the simplest equation method [20-23]. Then we
apply this method to establish exact solutions of
NLEEs.

We organize the rest of this paper as fol-
lows. In Section 2, we give the description of

the variable-coefficient simplest equation method.
Then in Section 3 we apply the method to solve
the asymmetric (2+1)-dimensional asymmetric
NNV system, the (2+1)-dimensional dispersive
long wave equations and the (2+1)-dimensional
Boussinesq and Kadomtsev-Petviashvili equa-
tions. Some conclusions are presented at the end
of the paper.

2 Description of the variable-
coefficient simplest equation
method

Suppose that a nonlinear evolution equation, say
in two or three independent variables x, y, t, is
given by

P (u, ut, ux, uy, utt, uxt, uxx, uxy...) = 0, (1)

where u = u(x, y, t) is an unknown function, P is a
polynomial in u = u(x, y, t) and its various partial
derivatives, in which the highest order derivatives
and nonlinear terms are involved.
Step 1. Suppose that

u(x, y, t) = U(ξ), ξ = ξ(x, y, t), (2)

and then Eq. (2) can be turned into the following
form

P̃ (U, U ′, U ′′, ...) = 0. (3)
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Step 2. Suppose that the solution of (3) can be

expressed by a polynomial in (ϕ
′

ϕ ) as follows:

U(ξ) =
m∑
i=0

ai(x, y, t)(
ϕ′

ϕ
)i, (4)

where am(x, y, t), am−1(x, y, t), ..., a0(x, y, t) are
all unknown functions to be determined later with
am(x, y, t) ̸= 0, and ϕ = ϕ(ξ) satisfies some cer-
tain simplest equation with the following form

F (ϕ, ϕ′, ϕ′′, ...) = 0. (5)

The positive integer m can be determined by con-
sidering the homogeneous balance between the
highest order derivatives and nonlinear terms ap-
pearing in (3).
Step 3. Substituting (4) into (3) and using
the relation between ϕ′(ξ) and ϕ(ξ) deduced by
(5), collecting all terms with the same order of
ϕ(ξ) together, the left-hand side of (3) is con-
verted to another polynomial in ϕ(ξ). Equat-
ing each coefficient of this polynomial to zero,
yields a set of partial differential equations for
am(x, y, t), am−1(x, y, t)..., a0(x, y, t), ξ(x, y, t).
Step 4. Solving the equations in Step 3, and by
using the solutions of Eq. (5), we can obtain exact
solutions for Eq. (1).

Remark 1 If we take Eq. (5) for different
forms such as the Riccati equation, Bernoulli
equation and so on, then different exact solu-
tions for Eq. (1) can be obtained. Especially,
if we substitute ϕ with G, and Eq. (5) takes
the form G′′(ξ) + λG′(ξ) + µG(ξ) = 0, then
the described method above becomes the variable-
coefficient (G’/G) method. So the (G’/G) method
is a special case of the simplest equation method.

Remark 2 As the partial differential equations
in Step 3 are usually over-determined, we may
choose some special forms of am, am−1, ..., a0 as
did in the following.

3 Application of the variable-
coefficient simplest equation
method to some NLEEs

3.1 Asymmetric (2+1) dimensional
NNV system

First we consider the asymmetric (2+1)-
dimensional NNV system [24-26]:{

ut − uxxx + α(uv)x = 0,
ux + βvy = 0,

(6)

where α and β are arbitrary nonzero constants.
Assume that u(x, y, t) = U(ξ), v(x, y, t) =

V (ξ), where ξ = ξ(x, y, t). Then Eqs. (6) can be
turned into

ξ′tU
′ − (ξ3xU

′′′ + 3ξxξxxU
′′ + ξxxxU

′)
+αξx(UV )′ = 0,

ξ′xU
′ + βξyV

′ = 0.
(7)

Suppose that the solutions of Eqs. (7) can be

expressed by a polynomial in (
ϕ′

ϕ
) as follows:

U(ξ) =
m∑
i=0

ai(y, t)(
ϕ′

ϕ
)i, V (ξ) =

n∑
i=0

bi(y, t)(
ϕ′

ϕ
)i,

(8)
where ai(y, t), bi(y, t) are under-determined func-
tions, and ϕ = ϕ(ξ) satisfies Eq. (5). Balancing
the order of U ′′′ and (UV )′, U ′ and V ′ in Eqs.
(7), we can obtain m + 3 = m + n + 1, m + 1 =
n+ 1⇒ m = 2, n = 2. So we have

U(ξ) = a2(y, t)(
ϕ′

ϕ
)2 + a1(y, t)(

ϕ′

ϕ
) + a0(y, t),

V (ξ) = b2(y, t)(
ϕ′

ϕ
)2 + b1(y, t)(

ϕ′

ϕ
) + b0(y, t).

(9)
We will proceed the computation in two cases.
Case 1: ϕ = ϕ(ξ) satisfies the Riccati equation

ϕ′(ξ) = a+ ϕ2(ξ), (10)

Substituting (9) into (7), using Eq. (10) and col-
lecting all the terms with the same power of ϕ to-
gether, equating each coefficient to zero, yields a
set of under-determined partial differential equa-
tions for ai(y, t), bi(y, t), i = 0, 1, 2 and ξ(x, y, t).
Solving these equations, yields

ξ(x, y, t) = −
√

C1
6 αx+

∫
C1α2
√
6C1α

F1(t)dt

+
∫ √

C1α
6

F2(y)
βC1

dy,

a2(y, t) = F2(y),
a1(y, t) = 0,

a0(y, t) = −
8F2(y)(α2C2

1σ−
3
8
C2

√
6αC1)

3α2C2
1

,

b2(y, t) = C1,
b1(y, t) = 0,
b0(y, t) = F1(t),

where C1 is an arbitrary nonzero constant, and
F1(t), F2(y) are two arbitrary functions with re-
spect to the variable t and y respectively.

On the other hand, for Eq. (10), the following
solutions are known to us.
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When σ < 0,{
ϕ1(ξ) = −

√
−σ tanh(

√
−σξ + c0),

ϕ2(ξ) = −
√
−σ coth(

√
−σξ + c0),

(11)

where c0 is an arbitrary constant.

When σ > 0,{
ϕ3(ξ) =

√
σ tan(

√
σξ + c0),

ϕ4(ξ) = −
√
σ cot(

√
σξ + c0),

(12)

ϕ5,6(ξ) =
√
σ[tan(2

√
σξ + c0)

± sec(2
√
σξ + c0)],

(13)

where c0 is an arbitrary constant.

When σ = 0

ϕ7(ξ) = −
1

ξ + c0
, (14)

where c0 is an arbitrary constant.

Combining the results above with (11)-(14),
we can obtain the following exact solutions for
the asymmetric (2+1)-dimensional NNV system.

When σ < 0:
u1(x, y, t) = −σF2(y)

{
sech2[

√
−σξ+c0]

tanh[
√
−σξ+c0]

}2

−8F2(y)(α2C2
1σ−

3
8

√
6C2

√
αC1)

3α2C2
1

,

v1(x, y, t) = −σC1{ sech
2[
√
−σξ+c0]

tanh[
√
−σξ+c0]

}2 + F1(t).

(15)
u2(x, y, t) = −σF2(y){ csch

2[
√
−σξ+c0]

coth[
√
−σξ+c0]

}2

−8F2(y)(α2C2
1σ−

3
8

√
6C2

√
αC1)

3α2C2
1

,

v2(x, y, t) = −σC1{ csch
2[
√
−σξ+c0]

coth[
√
−σξ+c0]

}2 + F1(t).

(16)
When σ > 0:

u3(x, y, t) = σF2(y){ sec
2[
√
σξ+c0]

tan[
√
σξ+c0]

}2

−8F2(y)(α2C2
1σ−

3
8

√
6C2

√
αC1)

3α2C2
1

,

v3(x, y, t) = σC1{ sec
2[
√
σξ+c0]

tan[
√
σξ+c0]

}2 + F1(t).

(17)
u4(x, y, t) = σF2(y){ csc

2[
√
σξ+c0]

cot[
√
σξ+c0]

}2

−8F2(y)(α2C2
1σ−

3
8

√
6C2

√
αC1)

3α2C2
1

,

v4(x, y, t) = σC1{ csc
2[
√
σξ+c0]

cot[
√
σξ+c0]

}2 + F1(t).

(18)

and

u5,6(x, y, t) = 4σF2(y)×

{ sec
2[2

√
σξ+c0]±sec(2

√
σξ+c0) tan(2

√
σξ+c0)

tan(2
√
σξ+c0)±sec(2

√
σξ+c0)

}2

−8F2(y)(α2C2
1σ−

3
8

√
6C2

√
αC1)

3α2C2
1

,

v5,6(x, y, t) = 4σC1×

{ sec
2[2

√
σξ+c0]±sec(2

√
σξ+c0) tan(2

√
σξ+c0)

tan(2
√
σξ+c0)±sec(2

√
σξ+c0)

}2

+F1(t),
(19)

where

ξ = −
√

C1
6 αx+

∫
C1α2
√
6C1α

F1(t)dt

+
∫ √

C1α
6

F2(y)
βC1

dy.

When σ = 0: u7(x, y, t) =
F2(y)

(ξ+c0)2
− 8F2(y)(α2C2

1σ−
3
8

√
6C2

√
αC1)

3α2C2
1

,

v7(x, y, t) =
C1

(ξ+c0)2
+ F1(t).

(20)

Case 2: ϕ = ϕ(ξ) satisfies the following Bernoulli
equation

ϕ′ + λϕ = µϕ3. (21)

Substituting (9) into (7), using Eq. (21) and
collecting all the terms with the same power of ϕ
together, equating each coefficient to zero, yields a
set of under-determined partial differential equa-
tions for ai(y, t), bi(y, t), i = 0, 1, 2 and ξ(x, y, t).
Solving these equations, yields

a2(y, t) = F1(y), a1(y, t) = F1(y)λ,
a0(y, t) = C1F1(y), b2(y, t) = C2,
b1(y, t) = C2λ,

b0(y, t) = −
αC2(C1−λ2

6
)
√
6αC2−12F ′

2(t)

α
√
6αC2

,

ξ(x, y, t) = −
√
6αC2
12 x+

∫ √
6αC2F1(y)
12βC2

dy + F2(t),

where C1, C2 are arbitrary constants with C2 ̸= 0,
and F1(y), F2(t) are two arbitrary functions with
respect to the variable y and t respectively.

By the general solutions of Eq. (21), we have
ϕ(ξ) = ± 1√

µ
λ
+Ae2λξ

,

ϕ′

ϕ = − Aλe2λξ
µ
λ
+Ae2λξ

,
(22)

where λ, µ, A are arbitrary constants with λ ̸= 0,
and µ2 +A2 ̸= 0.
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Substituting the results above into Eqs. (9),
and combining with (22), we can obtain the fol-
lowing exact solutions:



u8(x, y, t) = C1F1(y) + F1(y)(− Aλe2λξ
µ
λ
+Ae2λξ

)

+F1(y)λ(− Aλe2λξ
µ
λ
+Ae2λξ

)2,

v8(x, y, t) = −
αC2(C1−λ2

6
)
√
6αC2−12F ′

2(t)

α
√
6αC2

+C2λ(− Aλe2λξ
µ
λ
+Ae2λξ

)

+C2(− Aλe2λξ
µ
λ
+Ae2λξ

)2,

(23)

where ξ = −
√
6αC2
12 x+

∫ √
6αC2F1(y)
12βC2

dy + F2(t).

Especially, if we set µ = λA in Eq. (23), then
we obtain the following solitary wave solutions:

u9(x, y, t) = C1F1(y)− λF1(y)
2 [(1 + tanh(λξ))]

+λ3F1(y)
4 [1 + tanh(λξ)]2,

v9(x, y, t) = −
αC2(C1−λ2

6
)
√
6αC2−12F ′

2(t)

α
√
6αC2

−C2λ2

2 [(1 + tanh(λξ))]

+C2λ2

4 [1 + tanh(λξ)]2.

Remark 3 In [24-26], some exact solutions for
the asymmetric (2+1) dimensional NNV system
are established using different methods. We note
that the established solutions involving arbitrary
functions as coefficients above are different from
them essentially as we have used a new variable-
coefficient method here, and are new exact solu-
tions which have been reported by other authors in
the literature.

3.2 (2+1)-dimensional dispersive long
wave equations

We consider the known (2+1)-dimensional disper-
sive long wave equations [27-40]:{

uyt + vxx + (uux)y = 0,

vt + ux + (uv)x + uxxy = 0.
(24)

Some types of exact solutions for Eqs. (27)-
(28) have been obtained in [27-40] by use of vari-
ous methods including the Riccati sub-equation
method [27, 28, 33], the nonlinear transforma-
tion method [29], Jacobi function method [31,
32, 40], (G’/G)-expansion method [30], modified
CK’s direct method [34], EXP-function method

[32], Hopf-Cole transformation method [36], mod-
ified extended Fan’s sub-equation method [37, 38],
generalized algebraic method [39].

To apply the proposed method, similar as
the process above, we assume that u(x, y, t) =
U(ξ), v(x, y, t) = V (ξ), ξ = ξ(x, y, t). Then Eqs.
(24) can be turned into

ξ′′ytU
′ + ξ′yξ

′
tU

′′ + ξ′′xxV
′ + (ξ′x)

2V ′′

+ξ′xξ
′
y(UU

′′ + U ′2) + ξ′′yxUU
′ = 0,

ξ′tV
′ + ξ′xU

′ + ξ′x(U
′V + UV ′) + ξ′′′yxxU

′

+(ξ′yξ
′′
xx + 2ξ′xξ

′′
yx)U

′′ + ξ′y(ξ
′
x)

2U ′′′ = 0.
(25)

Suppose that the solutions of Eqs. (25) can be

expressed by a polynomial in (ϕ
′

ϕ ) as follows:
U(ξ) =

m∑
i=0

ai(y, t)(
ϕ′

ϕ )
i,

V (ξ) =
n∑

i=0
bi(y, t)(

ϕ′

ϕ )
i.

(26)

By balancing the highest order derivatives and
nonlinear terms in Eqs. (25) we obtain m =
1, n = 2. So U(ξ) = a1(y, t)(

ϕ′

ϕ ) + a0(y, t),

V (ξ) = b2(y, t)(
ϕ′

ϕ )
2 + b1(y, t)(

ϕ′

ϕ ) + b0(y, t).

(27)
Similarly, we will proceed the computation in

two cases.
Case 1: If ϕ = ϕ(ξ) satisfies the Riccati
equation Eq. (10), then substituting (27)
into (25), using Eq. (10) and collecting all
the terms with the same power of ϕ together,
equating each coefficient to zero, yields a set
of under-determined partial differential equa-
tions for a0(y, t), a1(y, t), b0(y, t), b1(y, t), b2(y, t)
and ξ(x, y, t). Solving these equations, yields

ξ(x, y, t) = C1x+
∫ F1(y)

4C1σ
dy + y

4C1σ
+ F2(t),

a1(y, t) = ±2C1,

a0(y, t) = −
F ′
2(t)
C1

,

b2(y, t) = −F1(y)+1
2σ ,

b1(y, t) = 0,
b0(y, t) = F1(y),

where C1 is an arbitrary nonzero constant, and
F1(y), F2(t) are two arbitrary functions with re-
spect to the variable y and t respectively.

By the general solutions of Eq. (10) denoted
in (11)-(14) we can obtain the following exact so-
lutions for Eqs. (24).
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When σ < 0:
u1(x, y, t) = ±2C1

√
−σ{ sech

2[
√
−σξ+c0]
}

−F ′
2(t)
C1

,

v1(x, y, t) =
F1(y)+1

2 { sech
2[
√
−σξ+c0]
}

2

+F1(y).

(28)


u2(x, y, t) = ∓2C1

√
−σ{ csch

2[
√
−σξ+c0]

coth[
√
−σξ+c0]

}

−F ′
2(t)
C1

,

v2(x, y, t) =
F1(y)+1

2 { csch
2[
√
−σξ+c0]

coth[
√
−σξ+c0]

}2

+F1(y).
(29)

When σ > 0:
u3(x, y, t) = ±2C1

√
σ{ sec

2[
√
σξ+c0]

tan[
√
σξ+c0]

}
−F ′

2(t)
C1

,

v3(x, y, t) = −F1(y)+1
2 { sec

2[
√
σξ+c0]

tan[
√
σξ+c0]

}2

+F1(y).

(30)


u4(x, y, t) = ∓2C1

√
σ{ csc

2[
√
σξ+c0]

cot[
√
σξ+c0]

}
−F ′

2(t)
C1

,

v4(x, y, t) = −F1(y)+1
2 { csc

2[
√
σξ+c0]

cot[
√
σξ+c0]

}2

+F1(y).

(31)



u5,6(x, y, t) = ±4C1
√
σ

{ sec
2[2

√
σξ+c0]±sec(2

√
σξ+c0)tan(2

√
σξ+c0)

tan(2
√
σξ+c0)±sec(2

√
σξ+c0)

}

−F ′
2(t)
C1

,

v5,6(x, y, t) = −2(F1(y) + 1)

{ sec
2[2

√
σξ+c0]±sec(2

√
σξ+c0) tan(2

√
σξ+c0)

tan(2
√
σξ+c0)±sec(2

√
σξ+c0)

}2

+F1(y),
(32)

where ξ = C1x+
∫ F1(y)

4C1σ
dy + y

4C1σ
+ F2(t).

When σ = 0: u7(x, y, t) =
∓2C1
(ξ+c0)

− F ′
2(t)
C1

,

v7(x, y, t) =
−(F1(y)+1)
2σ(ξ+c0)2

+ F1(y).
(33)

Case 2: If ϕ = ϕ(ξ) satisfies Eq. (21), then sub-
stituting (27) into (25), using Eq. (21) and col-
lecting all the terms with the same power of ϕ to-
gether, equating each coefficient to zero, yields a
set of under-determined partial differential equa-
tions for a0(y, t), a1(y, t), b0(y, t), b1(y, t), b2(y, t)

and ξ(x, y, t). Solving these equations, yields

ξ(x, y, t) = C1x
4 −

∫ C1F1(t)
4 dt+

λC2
1

8 t

−C1t
4 F2(y) + F3(y),

a1(y, t) = C1,
a0(y, t) = F1(t) + F2(y),

b2(y, t) =
C1
2 tF

′
2(y)− 2F ′

3(y),

b1(y, t) =
C2

1λ
2 tF ′

2(y)− 2C1λF
′
3(y),

b0(y, t) = −F ′
2(y)− 1,

where C1 is an arbitrary nonzero constant, and
F1(t), F2(y), F3(y) are arbitrary functions.

Substituting the results above into Eqs. (27),
and combining with (23), we can obtain the fol-
lowing exact solutions:

u8(x, y, t) = F1(t) + F2(y) + C1(− Aλe2λξ
µ
λ
+Ae2λξ

),

v8(x, y, t) = −F ′
2(y)− 1

+[
C2

1λ
2 tF ′

2(y)− 2C1λF
′
3(y)](− Aλe2λξ

µ
λ
+Ae2λξ

)

+[C1
2 tF

′
2(y)− 2F ′

3(y)](− Aλe2λξ
µ
λ
+Ae2λξ

)2.

(34)
Especially, If we set µ = λA in Eq. (34), then we
obtain the following solitary wave solutions:

u9(x, y, t) = F1(t) + F2(y)− C1λ
2 [(1 + tanh(λξ))],

v9(x, y, t) = −F ′
2(y)− 1

−[C
2
1λ

2

4 tF ′
2(y)− C1λ

2F ′
3(y)][(1 + tanh(λξ))]

+[C1λ2

8 tF ′
2(y)− λ2

2 F
′
3(y)][(1 + tanh(λξ))]2.

Remark 4 The established solutions in Eqs.
(28)-(34) for the (2+1)-dimensional dispersive
long wave equations can not be obtained by the
methods in [27-40]. As involving arbitrary func-
tions as coefficients, they are new exact solutions
to our best knowledge.

3.3 (2+1)-dimensional Boussinesq and
Kadomtsev-Petviashvili equations

We consider the known (2+1)-dimensional
Boussinesq and Kadomtsev-Petviashvili equa-
tions [41]:

uy = qx,
vx = qy,
qt = qxxx + qyyy + 6(qu)x + 6(qv)y.

(35)

Assume that u(x, y, t) = U(ξ), v(x, y, t) =
V (ξ), q(x, y, t) = Q(ξ), ξ = ξ(x, y, t). Then Eqs.
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(35) can be turned into
ξ′yU

′ − ξ′xQ′ = 0
ξ′xV

′ − ξ′yQ′ = 0
ξ′tQ

′ − ξ′′′xxxQ′ − 3ξ′xξ
′′
xxQ

′′ − (ξ′x)
3Q′′′ − ξ′′′yyyQ′

−3ξ′yξ′′yyQ′′ − (ξ′y)
3Q′′′ − 6ξ′x(QU)′ − 6ξ′y(QV )′ = 0.

(36)
Suppose that the solutions of Eqs. (36) can be

expressed by a polynomial in (ϕ
′

ϕ ) as follows: and
suppose 

U(ξ) =
m∑
i=0

ai(x, t)(
ϕ′

ϕ )
i,

V (ξ) =
n∑

i=0
bi(x, t)(

ϕ′

ϕ )
i

Q(ξ) =
p∑

i=0
bi(x, t)(

ϕ′

ϕ )
i.

(37)

By balancing U ′ andQ′, V ′ andQ′, Q′′′ and (QU)′

in Eqs. (36) we obtain m = n = p = 2. So
U(ξ) = a2(x, t)(

ϕ′

ϕ )
2 + a1(x, t)(

ϕ′

ϕ ) + a0(x, t),

V (ξ) = b2(x, t)(
ϕ′

ϕ )
2 + b1(x, t)(

ϕ′

ϕ ) + b0(x, t)

Q(ξ) = c2(x, t)(
ϕ′

ϕ )
2 + c1(x, t)(

ϕ′

ϕ ) + c0(x, t).

(38)
For simplicity, we only assume that ϕ = ϕ(ξ)
satisfies the Riccati equation Eq.(10). Substi-
tuting (38) into (36), using Eq.(10) and collect-
ing all the terms with the same power of ϕ to-
gether, equating each coefficient to zero, yields a
set of under-determined partial differential equa-
tions for ai(x, t), bi(x, t), ci(x, t), i = 0, 1, 2 and
ξ(x, y, t). Solving these equations, yields

ξ(x, y, t) =
√
−C1y − F1(t)x√

−C1
+ F2(t),

a2(x, t) =
F 2
1 (t)
C1

,

a1(x, t) = 0,

a0(x, t) =
C!xF

′
1(t)+(−C1)

3
2 F ′

2(t)
6C1F1(t)

−8C3
1σ+8σF 3

1 (t)+3C2
1F3(t)

3C1F1(t)
,

b2(x, t) = C1,
b1(x, t) = 0,
b0(x, t) = F3(t),
c2(x, t) = F1(t),
c1(x, t) = 0,
c0(x, t) = 0,

where C1, C2 are arbitrary constants with C1 <
0, and F1(t), F2(t), F3(t) are arbitrary functions
with respect to the variable t.

By the general solutions of Eq. (10) denoted
in (11)-(14) we can obtain the following exact so-
lutions for Eqs. (35).

When σ < 0:



u1(x, y, t) = −
σF 2

1 (t)
C1
{ sech

2[
√
−σξ+c0]

tanh[
√
−σξ+c0]

}2

+
C!xF

′
1(t)+(−C1)

3
2 F ′

2(t)
6C1F1(t)

−8C3
1σ+8σF 3

1 (t)+3C2
1F3(t)

3C1F1(t)
,

v1(x, y, t) = −C1σ{ sech
2[
√
−σξ+c0]

tanh[
√
−σξ+c0]

}2 + F3(t)

q1(x, y, t) = −σF1(t){ sech
2[
√
−σξ+c0]

tanh[
√
−σξ+c0]

}2,
(39)

where ξ =
√
−C1y − F1(t)x√

−C1
+ F2(t).

And



u2(x, y, t) = −
σF 2

1 (t)
C1
{ csch

2[
√
−σξ+c0]

coth[
√
−σξ+c0]

}2

+
C!xF

′
1(t)+(−C1)

3
2 F ′

2(t)
6C1F1(t)

−8C3
1σ+8σF 3

1 (t)+3C2
1F3(t)

3C1F1(t)
,

v2(x, y, t) = −C1σ{ csch
2[
√
−σξ+c0]

coth[
√
−σξ+c0]

}2 + F3(t)

q2(x, y, t) = −σF1(t){ csch
2[
√
−σξ+c0]

coth[
√
−σξ+c0]

}2,
(40)

where ξ =
√
−C1y − F1(t)x√

−C1
+ F2(t).

When σ > 0:



u3(x, y, t) =
σF 2

1 (t)
C1
{ sec

2[
√
σξ+c0]

tan[
√
σξ+c0]

}2

+
C!xF

′
1(t)+(−C1)

3
2 F ′

2(t)
6C1F1(t)

−8C3
1σ+8σF 3

1 (t)+3C2
1F3(t)

3C1F1(t)
,

v3(x, y, t) = C1σ{ sec
2[
√
σξ+c0]

tan[
√
σξ+c0]

}2 + F3(t)

q3(x, y, t) = σF1(t){ sec
2[
√
σξ+c0]

tan[
√
σξ+c0]

}2,
(41)

where ξ =
√
−C1y − F1(t)x√

−C1
+ F2(t).



u4(x, y, t) =
σF 2

1 (t)
C1
{ csc

2[
√
σξ+c0]

cot[
√
σξ+c0]

}2

+
C!xF

′
1(t)+(−C1)

3
2 F ′

2(t)
6C1F1(t)

−8C3
1σ+8σF 3

1 (t)+3C2
1F3(t)

3C1F1(t)
,

v4(x, y, t) = C1σ{ csc
2[
√
σξ+c0]

cot[
√
σξ+c0]

}2 + F3(t)

q4(x, y, t) = σF1(t){ csc
2[
√
σξ+c0]

cot[
√
σξ+c0]

}2,
(42)

where ξ =
√
−C1y − F1(t)x√

−C1
+ F2(t).
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And

u5,6(x, y, t) =
4σF 2

1 (t)
C1

{ sec
2[2

√
σξ+c0]±sec(2

√
σξ+c0)tan(2

√
σξ+c0)

tan(2
√
σξ+c0)±sec(2

√
σξ+c0)

}2

+
C!xF

′
1(t)+(−C1)

3
2 F ′

2(t)
6C1F1(t)

−8C3
1σ+8σF 3

1 (t)+3C2
1F3(t)

3C1F1(t)
,

v5,6(x, y, t) = 4C1σ

{ sec
2[2

√
σξ+c0]±sec(2

√
σξ+c0)tan(2

√
σξ+c0)

tan(2
√
σξ+c0)±sec(2

√
σξ+c0)

}2

+F3(t)

q5,6(x, y, t) = 4σF1(t)

{ sec
2[2

√
σξ+c0]±sec(2

√
σξ+c0)tan(2

√
σξ+c0)

tan(2
√
σξ+c0)±sec(2

√
σξ+c0)

}2,
(43)

where ξ =
√
−C1y − F1(t)x√

−C1
+ F2(t).

When σ = 0:

u7(x, y, t) =
F 2
1 (t)

C1(ξ+c0)

2

+
C!xF

′
1(t)+(−C1)

3
2 F ′

2(t)
6C1F1(t)

−8C3
1σ+8σF 3

1 (t)+3C2
1F3(t)

3C1F1(t)
,

v7(x, y, t) =
C1

(ξ+c0)2
+ F3(t)

q7(x, y, t) =
F1(t)

(ξ+c0)2
,

(44)

where ξ =
√
−C1y − F1(t)x√

−C1
+ F2(t).

Remark 5 The established solutions in Eqs.
(39)-(44) for the (2+1)-dimensional Boussinesq
and Kadomtsev-Petviashvili equations are new ex-
act solutions so far in the literature.

4 Conclusions

We have proposed a variable-coefficient simplest
equation method for solving nonlinear evolution
equations, and applied it to find exact solutions of
the asymmetric (2+1)-dimensional NNV system,
the (2+1)-dimensional dispersive long wave equa-
tions and the (2+1)-dimensional Boussinesq and
Kadomtsev-Petviashvili equations. As a result,
some new exact solutions and solitary wave solu-
tions involving arbitrary function as coefficients
for them have been obtained. These solutions
may provide some references for the research in
related physical phenomena. Finally, we note the
proposed method in this paper can also be applied
to other nonlinear evolution equations.
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